Welcome to BCI Lib!
BCI Lib
Basic information
Implementation code for BCI models. The source code presented on the github.
All methods were implemented based on pytorch
for simple parallelization by using cuda
.
All information about this project can be found in the documentation.
Requirements and Installation
A simple instruction of installation using pip is provided near the source code.
More information about installation can be found in documentation installation page.
Example of use
A simple examples of module usage can be found in documentation example page.
Installation
Requirements
Python >= 3.8
pip >= 22.0
Installing by using PyPi
Install
python3 -m pip install bci-ml
Uninstall
python3 -m pip uninstall bci-ml
Installing from GitHub source
Install
git clone https://github.com/intsystems/bci-ml.git
cd bci-ml
python3 -m pip install ./src/
Uninstall
python3 -m pip uninstall bci-ml
Example
Requirements
It is recommended make virtualenv and install all next packages in this virtualenv.
bci-ml==0.0.1
Include packages.
TODO
Preparing the dataset
TODO
Base Models
The bci.base_models
contains classes:
bci.base_models.BaseModel
bci.base_models.IdentityModel
- class bci_ml.base_models.BaseModel[source]
Base class for the BCI models.
- class bci_ml.base_models.IdentityModel[source]
A model which defines identity mapping. Mathematically define model \(\textbf{f}(\textbf{x}) = \textbf{x}\).
Warning
It’s just an example of BCI model, and cannot be used in real cases.
Example:
>>> _ = torch.random.manual_seed(42) # Set random seed for repeatability >>> >>> model = IdentityModel() >>> X = torch.randn(2, 1) # Generate random tensor >>> predict = model(X) tensor([[0.3367], [0.1288]])